- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- + 扇形统计图
- 求扇形统计图的某项数目
- 求扇形统计图的圆心角
- 由扇形统计图求某项的百分比
- 由扇形统计图求总量
- 由扇形统计图推断结论
- 条形统计图和扇形统计图信息关联
- 折线统计图
- 观察、猜想与证明
- 实践与应用(暂存)
“ 六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.

请根据上述统计图,解答下列问题:
(1)该校有_______个班级;各班留守儿童人数的中位数是_______;并补全条形统计图;
(2)若该镇所有小学共有65 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.

请根据上述统计图,解答下列问题:
(1)该校有_______个班级;各班留守儿童人数的中位数是_______;并补全条形统计图;
(2)若该镇所有小学共有65 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
学习成为现代人的时尚,我,市有关部门统计了最近6个月到图书馆的读者和职业分布情况,并做了下列两个不完整的统计图.请你根据图中提供的信息,解答下列问题:
(l)求在统汁的这段时问内,到图书馆阅读的总人次:
(2)请补全条形统汁图,并求扇形统计图中表示“商人”的扇形的圆心角度数;
(3)符5月份到图书馆的读者共20000人次,估汁其中约有多少人次读者是职工?
(l)求在统汁的这段时问内,到图书馆阅读的总人次:
(2)请补全条形统汁图,并求扇形统计图中表示“商人”的扇形的圆心角度数;
(3)符5月份到图书馆的读者共20000人次,估汁其中约有多少人次读者是职工?

市教育局为了解我市八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)。

请根据图中提供的信息,回答下列问题:
(1)
______%,请补全条形图.
(2)计算出“活动时间为5天”的部分对应的扇形圆心角.
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?

请根据图中提供的信息,回答下列问题:
(1)

(2)计算出“活动时间为5天”的部分对应的扇形圆心角.
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
某校对七年级的300名学生某次数学考试的成绩作了一次调查,将各范围的得分率绘制成扇形统计图(如图),则76~90分这一分数段的人数为( )
A.30 | B.75 |
C.9 | D.90 |
八年级(3)班共有学生54人,学习委员调查了班级学生参加课外活动的情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的人数占全班总人数的
,参加艺术活动的比参加科技活动的多3人,所调查班级同学参加体育活动情况如图所示,则在扇形图中表示参加体育活动人数的扇形的圆心角大小为( )

A.100° | B.110° |
C.120° | D.130° |
近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失.为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本了解”和“不了解”四个等级.小明根据调查结果绘制了如图1、2的统计图,请根据提供的信息回答问题:
(1)本次调查中,样本容量是________;
(2)扇形统计图中“基本了解”部分所对应的扇形圆心角是________;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解的概率的估计值为________;
(3)请在图2中补全频数分布直方图.

图1 图2
(1)本次调查中,样本容量是________;
(2)扇形统计图中“基本了解”部分所对应的扇形圆心角是________;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解的概率的估计值为________;
(3)请在图2中补全频数分布直方图.

图1 图2
在“不闯红灯,珍惜生命”活动中,文明中学的王欣和李好两位同学某天来到城区中心的十字路口,观察、统计上午7:
:00中闯红灯的人次,制作了两个数据统计图
图
和
.
图a提供的五个数据
各时段闯红灯人次
的中位数是______,平均数是______;
在扇形统计图中,求未成年人类对应扇形的圆心角的度数,并估计一个月
按30天计算
上午7:
:00在该十字路口闯红灯的未成年人约有多少人次.
根据统计图提供的信息向交通管理部门提出一条合理化建议.













海珠区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划. 学生可根据自己的喜好选修一门球类项目(A :足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的
选课情况进行统计后,制成了两幅不完整的统计图 (如图).
(1) 求出该班的总人数,并将条形统计图补充完整;
(2) 若该校共有学生 2500 名,请估计约有多少人选修足球?
(3) 该班班委 4 人中,1 人选修足球,1 人选修篮球,2 人选修羽毛球,陈老师要从这
4 人中任选 2 人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求 选出的 2 人中至少有 1 人选修羽毛球的概率.
选课情况进行统计后,制成了两幅不完整的统计图 (如图).
(1) 求出该班的总人数,并将条形统计图补充完整;
(2) 若该校共有学生 2500 名,请估计约有多少人选修足球?
(3) 该班班委 4 人中,1 人选修足球,1 人选修篮球,2 人选修羽毛球,陈老师要从这
4 人中任选 2 人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求 选出的 2 人中至少有 1 人选修羽毛球的概率.
