- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?

(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
为了解我市九年级学生升学考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(
:40分;
:39-35分;
:34-30分;
:29-20分;
:19-0分)统计如右表.根据上面提供的信息,回答下列问题:
(1)在统计表中,
的值为 ,
的值为 ;
(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在 分数段内(填相应分数段的字母).
(3)若把成绩在
分以上(含
分)定为优秀,则我市今年8000名九年级学生中体育成绩为优秀的学生人数约有 .名.





(1)在统计表中,


(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在 分数段内(填相应分数段的字母).
(3)若把成绩在



某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:

(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
| 发言次数n |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |

(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:
(1)在此次调查中,该校一共调查了 名学生;
(2)a= ;b= ;
(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;
(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.
最喜爱的节目 | 人数 |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相声 | 10 |
其它 | b |
(1)在此次调查中,该校一共调查了 名学生;
(2)a= ;b= ;
(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;
(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.

九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.

请解答下列问题:

(1)完成频数分布表,a=___,b=___.
(2)补全频数分布直方图;
(3)全校共有600名学生参加初赛,估计该校成绩90⩽x<100范围内的学生有多少人?

请解答下列问题:

(1)完成频数分布表,a=___,b=___.
(2)补全频数分布直方图;
(3)全校共有600名学生参加初赛,估计该校成绩90⩽x<100范围内的学生有多少人?
为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()


A.1200名 | B.450名 | C.400名 | D.300名 |
某学校为了了解初一学生防溺水知识掌握情况,随机抽取部分初一学生进行了相关知识测试,测试分为A、B、C、D四个等级进行统计,将统计结果绘制了如下两幅不完整的统计图:

请解答下列问题:
(1)该校参加本次防溺水知识测试共有______人;
(2)补全条形统计图;
(3)若该校初一年级共有学生1000人,试估计该校学生中对防溺水知识的掌握能达到A级的人数.

请解答下列问题:
(1)该校参加本次防溺水知识测试共有______人;
(2)补全条形统计图;
(3)若该校初一年级共有学生1000人,试估计该校学生中对防溺水知识的掌握能达到A级的人数.
高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.
(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;
(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;
(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?

(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;
(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;
(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?

小明和小李准备七月初到重庆或长沙去旅游,为了了解这两个城市哪个更热,他们查阅资料,收集了两个城市2018年七月前两周最高温度的记录,如下表:
根据上表,他们将两个城市的最高温度分别绘制了如下的频数分布直方图和统计表,并对数据进行了整理分析:
七月初重庆最高温度频数分布直方图
七月初长沙最高温度统计表
请回答如下问题:
(1)本次调查的目的是________;
(2)补全频数分布直方图,并写出表中a,b,c的值,
________,
_____,c=___.
(3)结合以上分析,你认为七月初哪个城市更热,请写出两条支持你观点的理由.
日期(七月) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
重庆最高温度/℃ | 33 | 36 | 34 | 31 | 31 | 30 | 30 | 33 | 34 | 36 | 37 | 35 | 37 | 37 |
长沙最高温度/℃ | 29 | 34 | 35 | 35 | 36 | 29 | 31 | 31 | 34 | 35 | 35 | 31 | 35 | 35 |
根据上表,他们将两个城市的最高温度分别绘制了如下的频数分布直方图和统计表,并对数据进行了整理分析:
七月初重庆最高温度频数分布直方图


七月初长沙最高温度统计表
| 平均数/℃ | 中位数/℃ | 众数/℃ | 34/℃以上天数 | 30/℃以下天数 |
重庆 | 33.9 | 34 | c | 6 | 0 |
长沙 | 33.2 | b | 35 | 7 | 2 |
请回答如下问题:
(1)本次调查的目的是________;
(2)补全频数分布直方图,并写出表中a,b,c的值,


(3)结合以上分析,你认为七月初哪个城市更热,请写出两条支持你观点的理由.