- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- + 图形的平移、对称与旋转
- 平移
- 轴对称
- 旋转
- 中心对称
- 图案设计
- 图形的相似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC的顶点坐标为A(0,﹣2)、B(3,﹣1)、C(2,1).
(1)请在图中画出△ABC关于y轴对称的图形△AB′C′;
(2)在y轴上找一点P,使PB+PC的值最小.(在坐标系中标出点P)
(1)请在图中画出△ABC关于y轴对称的图形△AB′C′;
(2)在y轴上找一点P,使PB+PC的值最小.(在坐标系中标出点P)

下列图形中,不是轴对称图形的是( )
A.互相垂直的两条直线构成的图形 | B.一条直线和直线外一点构成的图形 |
C.有一个内角为30°,另一个内角为120°的三角形 | D.有一个内角为60°的三角形 |
如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )


A.3种 | B.4种 | C.5种 | D.6种 |
如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为


A.7cm | B.10cm | C.12cm | D.22cm |
已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:
(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;
(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;
(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.
(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;
(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;
(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.
