- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- + 图形的平移、对称与旋转
- 平移
- 轴对称
- 旋转
- 中心对称
- 图案设计
- 图形的相似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)

(1)在图①中画出一个面积最小的中心对称图形PAQB,
(2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.

(1)在图①中画出一个面积最小的中心对称图形PAQB,
(2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
如图,在小正方形组成的网格中,每个小正方形的边长均为1个单位

(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.
(2)若连接AA1、CC1,则这两条线段之间的关系是_______.
(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.

(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.
(2)若连接AA1、CC1,则这两条线段之间的关系是_______.
(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.