- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- + 图形的平移、对称与旋转
- 平移
- 轴对称
- 旋转
- 中心对称
- 图案设计
- 图形的相似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知在图(1)与图(2)中,每个小方格都是边长为1个单位的正方形,
的三个顶点都在格点上.

(1)将
关于点
对称,在图(1)中画出对称后的图形
,并涂黑;
(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑。


(1)将



(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑。
如图所示的正方形网格中,△ABC的顶点均在格点上,请按要求画图:
(1)以点A为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.
(2)作出△ABC关于点O成中心对称的△A2B2C2.
(1)以点A为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.
(2)作出△ABC关于点O成中心对称的△A2B2C2.

如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;
②以原点O为对称中心,画出△ABC与关于原点对称的△A2B2C2,并写出点C2的坐标;
③以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.

①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;
②以原点O为对称中心,画出△ABC与关于原点对称的△A2B2C2,并写出点C2的坐标;
③以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.

如图,在正方形网格中,点A、B、C、M、N都在格点上.
(1)作△ABC关于直线MN对称的图形△A′B′C′.
(2)若网格中最小正方形的边长为1,求△ABC的面积.
(1)作△ABC关于直线MN对称的图形△A′B′C′.
(2)若网格中最小正方形的边长为1,求△ABC的面积.
