如图所示,在ΔABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为点D、M,分别交BC于点E、N,且DE和MN交于点

A. (1)若∠B=24°,求∠BAE的度数. (2)若AB=8,AC=11,思考ΔAEN的周长肯定小于多少? (3)若∠EAN=40°,求∠F的度数. |

如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6

(1)尺规作图:作AB边上的中点D和△BCD关于点D的中心对称图形;
(2)根据图形说明线段CD长的取值范围.

(1)尺规作图:作AB边上的中点D和△BCD关于点D的中心对称图形;
(2)根据图形说明线段CD长的取值范围.
(1)课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(2)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.
如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(2)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.

(阅读理解)
课外兴趣小组活动时,老师提出了如下问题:

如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是_____.
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范围是______.
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
(感悟)
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(问题解决)
(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.
课外兴趣小组活动时,老师提出了如下问题:

如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是_____.
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范围是______.
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
(感悟)
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(问题解决)
(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.