- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- + 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低3元,则平均每天的销售可增加30千克,若该专卖店销售这种核桃要想平均每天获利2090元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.
(1)求甲、乙两种商品的进价分别是多少元;
(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品,经销商决定把两商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.
(1)求甲、乙两种商品的进价分别是多少元;
(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品,经销商决定把两商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.
某服装店的员工与老板齐心协力,在2019年的经营中,每月的利润都在不断增加.该服装店的老板每季度都让员工总结经验与不足,下面是策划师与销售
品牌服装的员工在第二季度总结的一部分.
策划师的发言:第四月的利润为50万元,从第四月开始,第二季度的月增长率不变,第二季度的总利润为182万元.
销售
品牌的员工发言:销售的
品牌服装在四月份中,进价为100元,售价为140元,每周销售60件,由于该服装进货量少,因此,采用涨价销售,每件涨1元时,平均每周少售2件,每周盈利2250元.

请根据总结解答相关的问题:
(1)求第二季度月增长率;
(2)
品牌服装每周盈利2250元时,每件售价应该是多少元?

策划师的发言:第四月的利润为50万元,从第四月开始,第二季度的月增长率不变,第二季度的总利润为182万元.
销售



请根据总结解答相关的问题:
(1)求第二季度月增长率;
(2)

某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于50元/件,设一次性购买x万件(x>10)
(1)若x=15,则售价应是 元/件;
(2)一次性购买多少件产品时,该公司的销售总利润为728万元;
(1)若x=15,则售价应是 元/件;
(2)一次性购买多少件产品时,该公司的销售总利润为728万元;
某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.

(1)求y与x之间的函数关系;
(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:
.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?

(1)求y与x之间的函数关系;
(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:

某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
一种进价为每件40元的商品,若销售单价为60元,则每周可卖出300件,为提高利润,欲对该商品进行涨价销售经调查发现:每涨价1元,每周要少卖出10件.
(1)请写出商场每周卖该商品所获得的利润y(元)与该商品每件涨价x(元)之间的函数关系式;(不要求写自变量取值范围)
(2)商场每周销售该种商品获利能否达到6300元?请说明理由.
(1)请写出商场每周卖该商品所获得的利润y(元)与该商品每件涨价x(元)之间的函数关系式;(不要求写自变量取值范围)
(2)商场每周销售该种商品获利能否达到6300元?请说明理由.