- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- + 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某厂家授权一淘宝卖家销售该厂生产的儿童写字台,双方就每套写字台的进价与销售达成如下协议:若当月仅售出1套写字台,则写字台的进价为800元/套,在此基础上,每多售出1套,进价就降低10元/套(即售出2套时,进价为790元/套,依此类推),但每套进价不低于500元.月底厂家将一次性返利付给淘宝卖家,当月所售写字台可返利50元/套.
(1)若该淘宝卖家当月售出5套,则每套写字台的进价为 元;
(2)若该淘宝卖家当月售出x套,则每套写字台的进价为元多少(用含x的代数式表示).
(3)如果写字台的销售价为1200元,该卖家计划当月盈利9600元,那么要卖出多少套写字台?(盈利=销售利润+返利)
(1)若该淘宝卖家当月售出5套,则每套写字台的进价为 元;
(2)若该淘宝卖家当月售出x套,则每套写字台的进价为元多少(用含x的代数式表示).
(3)如果写字台的销售价为1200元,该卖家计划当月盈利9600元,那么要卖出多少套写字台?(盈利=销售利润+返利)
某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖出价格都为198元,那么在这次生意中,该商人( )
A.不赚不亏 | B.赚了6元 | C.亏了4元 | D.以上都不对 |
某商场销售一批衬衫, 平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价______元.
“端午节”又称为端阳节、重午节、龙舟节、正阳节、洛兰节等,是中国四大传统节日之一,端午习俗众多,其中吃粽子是端午节的习俗主题之一,某超市5月以50元/盒的进价购进一款粽子1000盒,以100元/盒的售价全部销售完.销售人员根据市场调研预测,该款粽子每盒的售价在5月售价基础上每降价5元,月销量就会相应增加100盒,该超市6月计划购进该款粽子不超过1400盒.
(1)根据该超市6月计划,该款粽子6月的售价最少每盒可以定价多少元?
(2)实际上,6月该超市购进该款粽子的进价比5月便宜了
元,而实际售价在5月基础上降了m元,已知6月的销售利润比5月增加8%,求m的值.
(1)根据该超市6月计划,该款粽子6月的售价最少每盒可以定价多少元?
(2)实际上,6月该超市购进该款粽子的进价比5月便宜了

某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(1)如果多种5棵橙子树,计算每棵橙子树的产量;
(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树;
(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?
(1)如果多种5棵橙子树,计算每棵橙子树的产量;
(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树;
(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?
阳光市场某个体商户购进某种电子产品,每个进价50元.调查发现,当售价为80元时,平均一周可卖出160个,而当每售价每降低2元时,平均一周可多卖出20个.若设每个电子产品降价x元,
(1)根据题意,填表:
(2)若商户计划每周盈利5200元,且尽量减少库存,则每个电子产品应降价多少元?
(1)根据题意,填表:
| 进价(元) | 售价(元) | 每件利润(元) | 销量(个) | 总利润(元) |
降价前 | 50 | 80 | 30 | 160 | ![]() |
降价后 | 50 | ________ | ________ | ________ | ________ |
(2)若商户计划每周盈利5200元,且尽量减少库存,则每个电子产品应降价多少元?
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和.
惠农商场于今年五月份以每件30元的进价购进一批商品.当商品售价为40元时,五月份销售256件.六、七月该商品十分畅销.销售量持续走高.在售价不变的基础上,7月份的销售量达到400件.设六、七这两个月月平均增长率不变.
(1)求六、七这两个月的月平均增长率;
(2)从八月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价0.5元,销售量增加5件,当商品降价多少元时,商场获利2640元?
(1)求六、七这两个月的月平均增长率;
(2)从八月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价0.5元,销售量增加5件,当商品降价多少元时,商场获利2640元?
某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,那么商场平均每天可多售出2件。
(1)若商场平均每天盈利1200元,则每件衬衫应降价多少元?
(2)若每件衬衫降价x元时,商场平均每天盈利y元,写出y关于x的函数解析式.
(1)若商场平均每天盈利1200元,则每件衬衫应降价多少元?
(2)若每件衬衫降价x元时,商场平均每天盈利y元,写出y关于x的函数解析式.