刷题首页
题库
初中数学
题干
阳光市场某个体商户购进某种电子产品,每个进价50元.调查发现,当售价为80元时,平均一周可卖出160个,而当每售价每降低2元时,平均一周可多卖出20个.若设每个电子产品降价
x
元,
(1)根据题意,填表:
进价(元)
售价(元)
每件利润(元)
销量(个)
总利润(元)
降价前
50
80
30
160
降价后
50
________
________
________
________
(2)若商户计划每周盈利5200元,且尽量减少库存,则每个电子产品应降价多少元?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-20 08:42:16
答案(点此获取答案解析)
同类题1
2018年非洲猪瘟疫情暴发后,2019年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:2019年12月份猪肉价格比2019年年初上涨了30%,某市民2019年12月3日在某超市购买1千克猪肉花了52元.
(1)问:2019年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克39元的猪肉,按2019年12月3日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1320元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
同类题2
某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价
x
元时,每天可销售
件,每件盈利
元;(用
x
的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
同类题3
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和.
同类题4
为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍. 现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.
(1)求最多能购进多媒体设备多少套?
(2)恰逢“双十一”活动,每套多媒体设备的售价下降
,每个电脑显示屏的售价下降
元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加
,实际投入资金与计划投入资金相同,求
的值.
同类题5
某汽车专卖店经销某种型号的汽车已知该型号汽车的进价为10万元/辆,经销一段时间后发现:当该型号汽车售价定为20万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆
(1)若每辆汽车的售价降低
x
万元,则每周的销售量是
辆(用含
x
的代数式表示)
(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,需将每辆汽车的售价降低多少万元?
相关知识点
方程与不等式
一元二次方程
实际问题与一元二次方程
一元二次方程的应用——营销问题