- 数与式
- 方程与不等式
- + 一元一次方程
- 从算式到方程
- 解一元一次方程
- 实际问题与一元一次方程
- 二元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
列方程解应用题
学校给七年级学生组织知识竞赛,共设20道题,各题的分值相同,每题必答.下表记录了5名学生的得分情况
(1)参赛者小芳得76分,她答对了几道题?
(2)参赛者小花说她得了83分,你认为可能吗?为什么?
学校给七年级学生组织知识竞赛,共设20道题,各题的分值相同,每题必答.下表记录了5名学生的得分情况
参赛者 | 答对题数 | 答错题数 | 得分 |
小明 | 10 | 10 | 40 |
小红 | 19 | 1 | 94 |
小刚 | 20 | 0 | 100 |
小强 | 18 | 2 | 88 |
小丽 | 14 | 6 | 64 |
(1)参赛者小芳得76分,她答对了几道题?
(2)参赛者小花说她得了83分,你认为可能吗?为什么?
用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时
张用A方法,其余用B方法。
(1)用
的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时

(1)用

(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
列方程解应用题:
暑假,某校七年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.他们一共租了10条船,并且每条船都坐满了人,

(1)大、小船各租了几条?
(2)他们租船一共花了多少元钱?
暑假,某校七年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.他们一共租了10条船,并且每条船都坐满了人,

(1)大、小船各租了几条?
(2)他们租船一共花了多少元钱?
我国古代的“河图”是由3×3的方格构成的(每一行、每一列以及每一条对角线上的三个点图的点数之和均相等).如图给出了“河图”的部分点图,请你推算出P处所对应的点图是( )


A.![]() | B.![]() | C.![]() | D.![]() |
某体育用品商店乒乓球拍每副定价100元,乒乓球每盒定价25元。该店为了促销制定了两种优惠方案.
方案一:买一副球拍赠一盒乒乓球;
方案二:按购买金额的九折付款.
某校计划为校乒乓球兴趣小组购买球拍10副,乒乓球若干盒(不少于10盒).问:
(1)当购买乒乓球多少盒时,两种优惠办法付款一样?
(2)当购买40盒乒乓球时,选择哪种方案购买更合算?
方案一:买一副球拍赠一盒乒乓球;
方案二:按购买金额的九折付款.
某校计划为校乒乓球兴趣小组购买球拍10副,乒乓球若干盒(不少于10盒).问:
(1)当购买乒乓球多少盒时,两种优惠办法付款一样?
(2)当购买40盒乒乓球时,选择哪种方案购买更合算?
甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )
A.75×1+(120-75)x=270 | B.75×1+(120+75)x=270 |
C.120(x-1)+75x=270 | D.120×1+(120+75)x=270 |
完成一项工作,一个人做要32天完成.现在计划先由一些人做2天,再增加1人和他们一起做4天,完成这项工作的一半.假设这些人的工作效率相同,具体应先安排多少人工作?