- 数与式
- 有理数的乘法
- 倒数
- + 有理数的乘方
- 有理数幂的概念理解
- 有理数的乘方运算
- 有理数乘方逆运算
- 乘方运算的符号规律
- 乘方的应用
- 有理数的混合运算
- 计算器——有理数
- 近似数
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
我们知道:加、减法运算是互逆运算,乘、除法运算也是互逆运算,乘方运算也有逆运算;如指数式23=8可以转化为3=1og28,2=log525也可以转化为52=25.一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).根据以上信息,解决以下问题:
(1)直接填写答案:log24= ,log216= ,log264= ;
(2)观察(1)的值有什么关系,你发现了什么结果?
(3)根据(2)中的结果,请归纳出一般性的结论并证明.
(1)直接填写答案:log24= ,log216= ,log264= ;
(2)观察(1)的值有什么关系,你发现了什么结果?
(3)根据(2)中的结果,请归纳出一般性的结论并证明.
你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。这样捏合到第____次后可拉出64根细面条.
