- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
把下列各数填在相应的表示集合的大括号里:
,12,-(-96),
,-4.5,0,
,
.
(1)正整数集合{ …}
(2)整数集合{ …}
(3)正分数集合{ …}
(4)负分数集合{ …}




(1)正整数集合{ …}
(2)整数集合{ …}
(3)正分数集合{ …}
(4)负分数集合{ …}
商人小周于上周买进某农场品10000
,每千克2.4元,进入批发市场后共占5个摊位,每个摊位最多能容纳2000
该品种的农产品,每个摊位的市场管理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况.
(1)星期四该农产品的价格为每千克多少元?
(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元?
(3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.


星期 | 一 | 二 | 三 | 四 | 五 |
与前一天相比价格的涨跌情况/元 | +0.3 | -0.1 | +0.25 | +0.2 | -0.5 |
当天的交易量/![]() | 2500 | 2000 | 3000 | 1500 | 1000 |
(1)星期四该农产品的价格为每千克多少元?
(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元?
(3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.
我们规定:有理数
用数轴上点
表示,
叫做点
在数轴上的坐标;有理数
用数轴上点
表示,
叫做点
在数轴上的坐标.
表示数轴上的两点
,
之间的距离.
(1)借助数轴,完成下表:
(2)观察(1)中的表格内容,猜想
______;(用含
,
的式子表示,不用说理)
(3)已知点
在数轴上的坐标是-2,且
,利用(2)中的结论求点
在数轴上的坐标.











(1)借助数轴,完成下表:
![]() | ![]() | ![]() | ![]() |
3 | 2 | 1 | 1 |
1 | 5 | ______ | ______ |
2 | -3 | ______ | ______ |
-4 | 1 | ______ | ______ |
-5 | -2 | ______ | ______ |
-3 | -6 | ______ | ______ |
(2)观察(1)中的表格内容,猜想



(3)已知点


