- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:在纸面上有一数轴,如图所示,点O为原点,点A1、A2、A3、…分别表示有理数1、2、3、…,点B1、B2、B3、…分别表示有理数﹣1、﹣2、﹣3、….

(1)折叠纸面:
①若点A1与点B1重合,则点B2与点 重合;
②若点B1与点A2重合,则点A5与有理数 对应的点重合;
③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是 , ;
(2)拓展思考:
点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.
①|a﹣1|是表示点A到点 的距离;
②若|a﹣1|=3,则有理数a= ;
③若|a﹣1|+|a+2|=5,则有理数a= .

(1)折叠纸面:
①若点A1与点B1重合,则点B2与点 重合;
②若点B1与点A2重合,则点A5与有理数 对应的点重合;
③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是 , ;
(2)拓展思考:
点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.
①|a﹣1|是表示点A到点 的距离;
②若|a﹣1|=3,则有理数a= ;
③若|a﹣1|+|a+2|=5,则有理数a= .
对数轴上的点
进行如下操作:先把点
表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点
的对应点
.比如,点
表示3,3乘以3得9,表示9的点向左平移1个单位为8,因此点
的对应点
表示的数为8.
⑴点
,
在数轴上,对线段
上的每个点进行上述操作后得到线段
,其中点
,
的对应点分别为
,
.如图,若点
表示的数是1,则点
表示的数是__________;若点
表示的数是
,则点
表示的数是__________.
⑵若数轴上的点
经过上述操作后,位置不变,则点
表示的数是__________.







⑴点













⑵若数轴上的点



学习了有理数的相关内容后,张老师提出了这样一个问题:“在1,
,
,0,
这五个有理数中,非负数有哪几个?“同学们经过思考后,小明同学举手回答说:“其中的非负数只有1和
这两个.”
你认为小明同学的回答是否正确:________,你的理由是:____________________.




你认为小明同学的回答是否正确:________,你的理由是:____________________.
已知,A、B在数轴上对应的数分别用a、b表示,且(a-20)2+|b+10|=0,P是数轴上的一个动点.
(1)在数轴上标出A、B的位置,并求出A、B之间的距离;
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;
(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.
(1)在数轴上标出A、B的位置,并求出A、B之间的距离;
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;
(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.
