- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
通过学习绝对值,我们知道
的几何意义是数轴上表示数
在数轴上的对应点与原点的距离,如:
表示
在数轴上的对应点到原点的距离.
,即
表示
、
在数轴上对应的两点之间的距离,类似的,
,即
表示
、
在数轴上对应的两点之间的距离;一般地,点
,
在数轴上分别表示数
、
,那么
,
之间的距离可表示为
.
请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示
和
的两点之间的距离是___;数轴上
、
两点的距离为
,点
表示的数是
,则点
表示的数是___.
(2)点
,
,
在数轴上分别表示数
、
、
,那么
到点
.点
的距离之和可表示为_ (用含绝对值的式子表示);若
到点
.点
的距离之和有最小值,则
的取值范围是_ __.
(3)
的最小值为_ __.



















请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示








(2)点













(3)
