1.单选题- (共10题)
3.
在矩形ABCD中,对角线AC分别与AB,AD所成的角为α,β,则sin2α+sin2β=1,在长方体ABCD﹣A1B1C1D1中,对角线AC1与棱AB,AD,AA1所成的角分别为α1,α2,α3,与平面AC,平面AB1,平面AD1所成的角分别为β1,β2,β3,则下列说法正确的是( )

①sin2α1+sin2α2+sin2α3=1 ②sin2α1+sin2α2+sin2α3=2
③cos2α1+cos2α2+cos2α3=1 ④sin2β1+sin2β2+sin2β3=1

①sin2α1+sin2α2+sin2α3=1 ②sin2α1+sin2α2+sin2α3=2
③cos2α1+cos2α2+cos2α3=1 ④sin2β1+sin2β2+sin2β3=1
A.①③ | B.②③ | C.①③④ | D.②③④ |
5.
雷达图(RadarChart),又可称为戴布拉图,蜘蛛网图(SpiderChart),是财务分析报表的一种,现可用于对研究对象的多维分析,如图为甲、乙两人五个方面的数据雷达图,则下列说法不正确的是( )


A.甲、乙两人在能力方面的表现基本相同 |
B.甲在沟通、服务、销售三个方面的表现优于乙 |
C.在培训与销售两个方面甲的综合表现优于乙 |
D.甲在这五个方面的综合表现优于乙 |
6.
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
A.假设三内角都不大于60度; |
B.假设三内角至多有两个大于60度; |
C.假设三内角至多有一个大于60度; |
D.假设三内角都大于60度。 |
7.
《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()
A.类比推理 | B.归纳推理 | C.演绎推理 | D.一次三段论 |
8.
某校有A、B、C、D四个社团,其中学生甲、乙、丙、丁四人在不同的四个社团中,在被问及在哪个社团时,甲说:“我没有参加A和B社团”.乙说:“我没有参加A和D社团”.丙说:“我也没有参加A和D社团”.丁说:“如果乙不参加B社团,我就不参加A社团”.则参加B社团的人是( )
A.甲 | B.乙 | C.丙 | D.丁 |
2.选择题- (共2题)
3.填空题- (共3题)
14.
恩格尔系数(Engel'sCoefficient)是食品支出总额占个人消费支出总额的比重,恩格尔系数越小,消费结构越完整,生活水平越高,某学校社会调查小组得到如下数据:

若y与x之间有线性相关关系,某人年个人消费支出总额为2.6万元,据此估计其恩格尔系数为_____.

若y与x之间有线性相关关系,某人年个人消费支出总额为2.6万元,据此估计其恩格尔系数为_____.

15.
观察下列几个三角恒等式
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
②tan13°tan35°+tan35°tan42°+tan42°tan13°=1
③tan5°tan100°+tan100°tan(﹣15)°+tan(﹣15)°tan5°=1.
一般的,若tanα,tanβ,tanγ均有意义,你可以归纳出结论:_____
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
②tan13°tan35°+tan35°tan42°+tan42°tan13°=1
③tan5°tan100°+tan100°tan(﹣15)°+tan(﹣15)°tan5°=1.
一般的,若tanα,tanβ,tanγ均有意义,你可以归纳出结论:_____
4.解答题- (共3题)
17.
某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据
(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;
(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:

(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;
(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)
参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线
的斜率和截距的最小二乘估计分别为,
年份编号x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加装户数y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;
(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:

(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;
(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)
参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线


18.
2019年4月22日是第50个世界地球日,半个世纪以来,这一呼吁热爱地球环境的运动已经演变为席卷全球的绿色风暴,让越来越多的人认识到保护环境、珍惜自然对人类未来的重要性.今年,自然资源部地球日的主题是“珍爱美丽地球,守护自然资源”.某中学举办了以“珍爱美地球,守护自然资源”为主题的知识竞赛.赛后从该校高一和高二年级的参赛者中随机抽取100人,将他们的竞赛成绩分为7组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布表:

现规定,“竞赛成绩≥80分”为“优秀”“竞赛成绩<80分”为“非优秀”
(Ⅰ)请将下面的2×2列联表补充完整;
(Ⅱ)判断是否有99%的把握认为“竞赛成绩与年级有关”?
附:独立性检验界值

现规定,“竞赛成绩≥80分”为“优秀”“竞赛成绩<80分”为“非优秀”
(Ⅰ)请将下面的2×2列联表补充完整;
| 优秀 | 非优秀 | 合计 |
高一 | | 50 | |
高二 | 15 | | |
合计 | | | 100 |
(Ⅱ)判断是否有99%的把握认为“竞赛成绩与年级有关”?
附:独立性检验界值

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(3道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16