1.单选题- (共4题)
2.填空题- (共12题)
3.解答题- (共4题)
17.
如图所示,在平面直角坐标系
上放置一个边长为1的正方形
,此正方形
沿
轴滚动(向左或者向右均可),滚动开始时,点
在原点处,例如:向右滚动时,点
的轨迹起初时以点
为圆心,1为半径的
圆弧,然后以点
与
轴交点为圆心,
长度为半径……,设点
的纵坐标与横坐标的函数关系式是
,该函数相邻两个零点之间的距离为
.

(1)写出
的值,并求出当
时,点
轨迹与
轴所围成的图形的面积
,研究该函数的性质并填写下面的表格:
(2)已知方程
在区间
上有11个根,求实数
的取值范围
(3)写出函数
的表达式.















(1)写出





函数性质 | 结论 | |
奇偶性 | | |
单调性 | 递增区间 | |
递减区间 | | |
零点 | |
(2)已知方程



(3)写出函数

19.
根据预测,某地第
个月共享单车的投放量和损失量分别为
和
(单位:辆),
其中
,
,第
个月底的共享单车的保有量是前
个月的
累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第
个月底的单车容纳量
(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?




其中




累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第


试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(12道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20