1.单选题- (共11题)
10.
某学校组织高三年级的300名学生参加期中考试,计划从这些考生中用系统抽样的方法选取10名学生进行考场状态追踪.现将所有学生随机编号后安排在各个考场,其中001~030号在第一考场,031~060号在第二考场,…,271~300号在第十考场.若在第五考场抽取的学生编号为133,则在第一考场抽到的学生编号为( )
A.003 | B.013 | C.023 | D.017 |
2.填空题- (共4题)
3.解答题- (共6题)
18.
如图所示,已知在四棱锥P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且
.

(1)求证:平面PBC⊥平面PAC;
(2)若点M是线段PB的中点,且PA⊥AB,求四面体MPAC的体积.


(1)求证:平面PBC⊥平面PAC;
(2)若点M是线段PB的中点,且PA⊥AB,求四面体MPAC的体积.
19.
已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数
.
(1)求动点M的轨迹T的方程;
(2)若直线l:x+y-3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.

(1)求动点M的轨迹T的方程;
(2)若直线l:x+y-3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.
20.
下表列出了10名5至8岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合y与x的关系:
(1)求y关于x的线性回归方程
(系数精确到0.01);
(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:
,
,
,
,
,
,137×14=1918.00.
参考公式:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
体重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
体积y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y关于x的线性回归方程

(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:






参考公式:回归方程



试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21