1.单选题- (共9题)
2.选择题- (共1题)
3.填空题- (共4题)
4.解答题- (共4题)
15.
已知函数f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函数在点(1,f(1))处的切线平行于直线y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,讨论c(x)的单调性;
(3)a=1时,函数y=f(x)图象上的所有点都落在区域
内,求实数t的取值范围.
(1)若函数在点(1,f(1))处的切线平行于直线y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,讨论c(x)的单调性;
(3)a=1时,函数y=f(x)图象上的所有点都落在区域

18.
运动健康已成为大家越来越关心的话题,某公司开发的一个类似计步数据库的公众号.手机用户可以通过关注该公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK和点赞.现从张华的好友中随机选取40人(男、女各20人),记录他们某一天行走的步数,并将数据整理如表:
(1)若某人一天行走的步数超过8000步被评定为“积极型”,否则被评定为“懈怠型”,根据题意完成下列2×2列联表,并据此判断能否有90%的把握认为男、女的“评定类型”有差异?
(2)在张华的这40位好友中,从该天行走的步数不超过5000步的人中随机抽取2人,设抽取的女性有X人,求X=1时的概率.
参考公式与数据:
K2=
,其中n=a+b+c+d.
步数 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
(1)若某人一天行走的步数超过8000步被评定为“积极型”,否则被评定为“懈怠型”,根据题意完成下列2×2列联表,并据此判断能否有90%的把握认为男、女的“评定类型”有差异?
| 积极型 | 懈怠型 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
(2)在张华的这40位好友中,从该天行走的步数不超过5000步的人中随机抽取2人,设抽取的女性有X人,求X=1时的概率.
参考公式与数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17