2019届重庆市江津中学、合川中学等七校高三第三次诊断性考试(理科)数学试题

适用年级:高三
试卷号:639319

试卷类型:四模及以后
试卷考试时间:2020/2/18

1.单选题(共7题)

1.
在等差数列中,前项和满足,则的值是(  )
A.5B.7C.9D.3
2.
已知三棱锥的四个顶点都在同一个球的球面上,,若三棱锥体积的最大值为,则该球的表面积为(   )
A.B.C.D.
3.
若双曲线的渐近线与圆相切,则C的渐近线方程为(   )
A.B.C.D.
4.
已知抛物线,焦点为F,直线,点,线段AF与抛物线C的交点为B,若,则(   )
A.B.35C.D.40
5.
有6个座位连成一排,三人就座,恰有两个空位相邻的概率是( )
A.B.C.D.
6.
阅读如图程序框图,若输出的数据为30,则判断框中应填入的条件为(   )
A.B.C.D.
7.
已知是虚数单位,复数的共轭复数虚部为
A.B.C.D.

2.选择题(共2题)

8.

下列各句中,划线成语使用恰当的一项是 (  )

9.

下列各句中,划线成语使用恰当的一项是 (  )

3.填空题(共3题)

10.
数列满足,其前项积为,则=
11.
xy满足,则的最小值为____
12.
一个空间几何体的三视图如图,则该几何体的体积为________.

4.解答题(共3题)

13.
如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面
(2)求与平面所成角的正弦值.
14.
已知椭圆的短轴长为,离心率为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若过点的直线与椭圆交于不同的两点为坐标原点,求的取值范围.
15.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
编号
2
7
12
17
22
27
32
37
42
47
性别










投篮成 绩
90
60
75
80
83
85
75
80
70
60
 
乙抽取的样本数据
编号
1
8
10
20
23
28
33
35
43
48
性别










投篮成 绩
95
85
85
70
70
80
60
65
70
60
 
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为,求的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
 
优秀
非优秀
合计

 
 
 

 
 
 
合计
 
 
10
 
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
 
(参考公式:,其中
试卷分析
  • 【1】题量占比

    单选题:(7道)

    选择题:(2道)

    填空题:(3道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:13