1.单选题- (共9题)
2.选择题- (共3题)
10.填上合适的数。
{#blank#}1{#/blank#}×4=16 6×{#blank#}2{#/blank#}=30 {#blank#}3{#/blank#}×6=12
16÷4={#blank#}4{#/blank#} 30÷6={#blank#}5{#/blank#} 12÷6={#blank#}6{#/blank#}
5×{#blank#}7{#/blank#}=10 {#blank#}8{#/blank#}×3=9 4×{#blank#}9{#/blank#}=20
3.填空题- (共9题)
14.
如图BD为△ABC的角平分线,且BD=BC, E为BD延长线上一点,BE=BA,
过E作EF⊥AB于F,下列结论:
①△ABD≌△EBC ;②∠BCE+∠BDC=180°;
③AD=AE=EC;④AB//CE ;
⑤BA+BC=2BF.其中正确的是________________.
过E作EF⊥AB于F,下列结论:
①△ABD≌△EBC ;②∠BCE+∠BDC=180°;
③AD=AE=EC;④AB//CE ;
⑤BA+BC=2BF.其中正确的是________________.

4.解答题- (共9题)
25.
如图,已知△ABD和△AEC中,AD=AB,AE=AC,∠DAB=∠EAC=60°,CD、 BE相交于点P.
(1)用全等三角形判定方法证明:BE=DC
(2)求∠BPC的度数;
(3)在(2)的基础上,经过深入探究后发现:射线AP平分∠BPC,请判断你的发现是否正确,并说明理由.
(1)用全等三角形判定方法证明:BE=DC
(2)求∠BPC的度数;
(3)在(2)的基础上,经过深入探究后发现:射线AP平分∠BPC,请判断你的发现是否正确,并说明理由.

26.
问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可
得出结论,他的结论应是__________________;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B
+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;
结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________.(直接写出答案)

如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B


结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________.(直接写出答案)




28.
(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、

A. (1)若BC=10,则△ADE周长是多少?为什么? (2)若∠BAC=128°,则∠DAE的度数是多少?为什么? |

29.
如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?

30.
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=B
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=B
A. ∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) ![]() ![]() (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正 ![]() |
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(9道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:5
9星难题:14