1.单选题- (共7题)
3.
①线性回归方程对应的直线
至少经过其样本数据点
中的一个点;
②若两个变量的线性相关性越强,则相关系数的绝对值越接近于
;
③在某项测量中,测量结果
服从正态分布
,若
位于区域
内的概率为
,则
位于区域
内的概率为
;
④对分类变量
与
的随机变量K2的观测值k来说,k越小,判断“
与
有关系”的把握越大.其中真命题的序号为( )


②若两个变量的线性相关性越强,则相关系数的绝对值越接近于

③在某项测量中,测量结果









④对分类变量




A.①④ | B.②④ | C.①③ | D.②③ |
4.
在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( )
A.180种 | B.150种 | C.96种 | D.114种 |
6.
某市组织了一次高二调研考试,考试后统计的数学成绩服从正态分布,其密度函数
, x∈(-∞,+∞),则下列命题不正确的是( )

A.该市这次考试的数学平均成绩为80分 |
B.分数在120分以上的人数与分数在60分以下的人数相同 |
C.分数在110分以上的人数与分数在50分以下的人数相同 |
D.该市这次考试的数学成绩标准差为10 |
2.填空题- (共4题)
11.
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14 ④他恰好有连续2次击中目标的概率为3×0.93×0.1
其中正确结论的序号是______
①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14 ④他恰好有连续2次击中目标的概率为3×0.93×0.1
其中正确结论的序号是______
3.解答题- (共3题)
13.
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
14.
2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全
列联表:
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
.
收看时间 (单位:小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 14 | ![]() | ![]() | 28 | 20 | 12 |
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全

| 男 | 女 | 合计 |
球迷 | 40 | | |
非球迷 | | ![]() | |
合计 | | | |
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为


附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 |

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(4道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:14