人教A版(2019) 必修第二册 突围者 第十章 综合拓展提升

适用年级:高一
试卷号:632917

试卷类型:课时练习
试卷考试时间:2020/3/6

1.单选题(共12题)

1.
某校毕业生的去向有三种:回家待业、上大学和补习.现取一个样本调查,调查结果如图所示.若该校每个学生上大学的概率为,则每个学生不补习的概率为(   )
A.B.C.D.
2.
甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损,用代替,
 
第1次
第2次
第3次
第4次
第5次

91
86
88
92
93

87
85
86
99

 
则乙的平均成绩低于甲的平均成绩的概率是(   )
A.B.C.D.
3.
小王同学有三支款式相同、颜色不同的圆珠笔,每支圆珠笔都有一个与之同颜色的笔帽,平时小王都将笔和笔帽套在一起,但偶尔会将笔和笔帽搭配成不同色.将笔和笔帽随机套在一起,请问小王将两支笔和笔帽的颜色混搭的概率是(  )
A.B.C.D.
4.
袋中有五张卡片,其中红色卡片三张,标号分别为;蓝色卡片两张,标号分别为.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的概率为(   )
A.B.C.D.
5.
从10个事件中任取一个事件,若这个事件是必然事件的概率为0.2,是不可能事件的概率为0.3,则这10个事件中随机事件的个数是(   )
A.3B.4C.5D.6
6.
一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷一次,设事件表示向上的一面出现奇数点,事件表示向上的一面出现的点数不超过3,事件表示向上的一面出现的点数不小于4,则(   )
A.是互斥而非对立事件B.是对立事件
C.是互斥而非对立事件D.是对立事件
7.
甲、乙两人喊拳,每人可以用手出三个数,每人则可喊五个数,当两人所出数之和等于某人所喊数时,喊该数者获胜.若甲喊10,乙喊15,则(   )
A.甲胜的概率大B.乙胜的概率大
C.甲、乙胜的概率一样大D.不能确定谁获胜的概率大
8.
袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:

由此可以估计,恰好抽取三次就停止的概率为(   )
A.B.C.D.
9.
下面有三个游戏,其中不公平的游戏是(   )
 
取球方式
结果
游戏1
有3个黑球和1个白球,游戏时,不放回地依次取2个球
取出的2个球同色→甲胜;取出的2个球不同色→乙胜
游戏2
有1个黑球和1个白球,游戏时,任取1个球.
取出的球是黑球→甲胜;取出的球是白球→乙胜.
游戏3
有2个黑球和2个白球,游戏时,不放回地依次取2个球.
取出的2个球同色→甲胜;取出的2个球不同色→乙胜.
 
A.游戏1和游戏3B.游戏1C.游戏2D.游戏3
10.
甲、乙两位同学各拿出六张游戏牌,用作投骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜得所有12张游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12张游戏牌的分配合理的是()
A.甲得9张,乙得3张
B.甲得6张,乙得6张
C.甲得8张,乙得4张
D.甲得10张,乙得2张
11.
从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为(   )
A.B.C.D.
12.
在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()
A.0.998B.0.046C.0.002D.0.954

2.填空题(共2题)

13.
对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间内的为一等品,在区间内的为二等品,在区间内的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则该件产品为二等品的概率为____________.
14.
,且,则称是“伙伴关系集合”.在集合的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为______________.

3.解答题(共6题)

15.
有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间/h
10
11
12
13
通过公路1的频数
20
40
20
20
通过公路2的频数
10
40
40
10
 
(1)为进行某项研究,从所用时间为12h的60辆汽车中随机抽取6辆.
(ⅰ)若用分层随机抽样的方法抽取,求从通公路1和公路2的汽车中各抽取几辆;
(ⅱ)若从(ⅰ)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率.
(2)假设汽车只能在约定时间的前11h出发,汽车只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车和汽车应如何选择各自的道路?
16.
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
 
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
 
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
⑴求z的值.    
⑵用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
⑶用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,  8.6, 9.2,  9.6,  8.7,  9.3,  9.0,  8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
17.
某区工商局、消费者协会在号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

(Ⅰ)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;
(Ⅱ)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.
18.
某港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足
19.
田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为,三匹马各比赛一次,胜两场者获胜.若这六匹马的优劣程度可以用以下不等式表示:.
(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌打探到齐王第一场必出上等马,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.
20.
汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以看成是轴对称图形.

小敏和小慧利用“土”“口”“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”),小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?
试卷分析
  • 【1】题量占比

    单选题:(12道)

    填空题:(2道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:20