1.选择题- (共2题)
1.
在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
2.解答题- (共15题)
3.
甲、乙两人各射击一次,击中目标的概率分别是
和
,假设两人射击是否击中目标相互直线没有影响,每人每次射击是否击中目标相互之间也没有影响.
求甲射击
次,至少有
次未击中目标的概率;
求两人各射击
次,甲恰好击中目标
次且乙恰好击中目标
次的概率;
假设每人连续
次未击中目标,则终止其射击,问:乙恰好射击
次后,被终止射击的概率是多少?












4.
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为
,服用B有效的概率为
.
(1)求一个试验组为甲类组的概率;
(2)观察3个试验组,用X表示这3个试验组中甲类组的个数,求X的分布列.


(1)求一个试验组为甲类组的概率;
(2)观察3个试验组,用X表示这3个试验组中甲类组的个数,求X的分布列.
5.
甲、乙两人在罚球线投球命中的概率分别为
与
,投中得1分
,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.



(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.
6.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1) 该顾客中奖的概率;
(2) 该顾客获得的奖品总价值x (元)的概率分布列和期望Ex.
(1) 该顾客中奖的概率;
(2) 该顾客获得的奖品总价值x (元)的概率分布列和期望Ex.
7.
国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)根据以往经验,可以认为实心球投掷距离
近似服从正态分布
,其中
近似为样本平均值,
近似为样本方差
,若规定:
时,测试成绩为“良好”,请估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,在被抽取的3人中,记实心球投掷距离在
内的人数为
,求
的概率分布及数学期望.
附:若
服从
,则
,
.
分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 22 | 40 | 20 | 8 |
以各组数据的中间值代表这组数据的平均值

(1)根据以往经验,可以认为实心球投掷距离






(2)现在从实心球投掷距离在





附:若




8.
每人在一轮投篮练习中最多可投篮4次,现规定,一旦命中即停止该轮练习,否则一直投到第4次为止.已知一选手的投篮命中率为0.7,求一轮练习中,该选手的实际投篮次数X的分布列,并求X的均值.
9.
9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.
(1)求甲坑不需要补种的概率;
(2)求3个坑中恰有1个坑不需要补种的概率;
(3)求有坑需要补种的概率.(精确到0.001)
(1)求甲坑不需要补种的概率;
(2)求3个坑中恰有1个坑不需要补种的概率;
(3)求有坑需要补种的概率.(精确到0.001)
10.
某医院内科有5名主任医师和15名主治医师,现从中随机地挑选4人组织一个医疗小组,设X是4人中主任医师的人数.
(1)写出X的分布列;
(2)求4人中至少有1名主任医师的概率(精确到0.001).
(1)写出X的分布列;
(2)求4人中至少有1名主任医师的概率(精确到0.001).
13.
某条街道上有4个安置的红绿灯路口,各路口出现什么颜色的灯相互独立,红、绿两种 颜色的灯显示的时间之比为1∶2,今有一汽车沿该街道行驶,若以X表示该汽车首次遇到红灯之前已通过路口的个数,求X的分布列,并求该汽车在这条街道上至少遇到一次红灯的概率.
14.
一个袋子中有3个新球和7个旧球,逐个从袋中取球,直到取到旧球时停止,记X为取球的次数,设袋中每个球被取到的可能性相同,在下面两种情况下分别求出X的分布:
(1)每次取出的球都不放回袋中;
(2)每次取出一球后打比赛,赛完后放回袋中.
(1)每次取出的球都不放回袋中;
(2)每次取出一球后打比赛,赛完后放回袋中.
16.
某大街在甲、乙、丙三个地方设有红灯、绿灯交通信号,汽车在甲、乙、丙三个地方通过(即通过绿灯)的概率分别是
、
、
,对于该大街上行驶的汽车,求:
(1)在三个地方都不停车的概率;
(2)在三个地方都停车的概率;
(3)只在一个地方停车的概率.



(1)在三个地方都不停车的概率;
(2)在三个地方都停车的概率;
(3)只在一个地方停车的概率.
试卷分析
-
【1】题量占比
选择题:(2道)
解答题:(15道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15