1.填空题- (共8题)
7.
设N=2n(n∈N*,n≥2),将N个数x1,x2, ,xN依次放入编号为1,2, ,N的N个位置,得到排列P0=x1x2 xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前
和后
个位置,得到排列P1=x1x3 xN-1x2x4 xN,将此操作称为C变换,将P1分成两段,每段
个数,并对每段作C变换,得到
;当2≤i≤n-2时,将Pi分成2i段,每段
个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置,当N=32时,x21位于P3中的第 个位置.





2.解答题- (共4题)
9.
已知二次函数f(x)=ax2+bx+c .
(1)设集合A={x|f(x)=x}.
①若A={1,2},且f(0)=2,求f(x)的解析式;
②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).
(2)设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:
.
(1)设集合A={x|f(x)=x}.
①若A={1,2},且f(0)=2,求f(x)的解析式;
②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).
(2)设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:

10.
设正项数列{an}(n≥5)对任意正整数k(k≥3)恒满足:
,且
.
(1)求数列{an}的通项公式;
(2)是否存在整数
,使得
对于任意正整数n恒成立?若存在,求出
的值;若不存在,说明理由。(注:
)


(1)求数列{an}的通项公式;
(2)是否存在整数




11.
一个正方形花圃,被分为n(
)份,种植红、黄、蓝、绿4种颜色不同的花,要求相邻两部分种植不同颜色的花。

(1)如图1,正方形被分为3份A、B、C,有多少种不同的种植方法?
(2)如图2,正方形被分为4份A、B、C、D,有多少种不同的种植方法?
(3)如图3,正方形被分为5份A、B、C、D、E,有多少种不同的种植方法?


(1)如图1,正方形被分为3份A、B、C,有多少种不同的种植方法?
(2)如图2,正方形被分为4份A、B、C、D,有多少种不同的种植方法?
(3)如图3,正方形被分为5份A、B、C、D、E,有多少种不同的种植方法?
试卷分析
-
【1】题量占比
填空题:(8道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:12