1.单选题- (共3题)
2.选择题- (共8题)
4.由{#blank#}1{#/blank#}围成的图形叫做三角形,三角形有{#blank#}2{#/blank#}条边,{#blank#}3{#/blank#}个角,{#blank#}4{#/blank#}个顶点。
11.156×(84-39)÷60,第一步算{#blank#}1{#/blank#},第二步算{#blank#}2{#/blank#},第三步算{#blank#}3{#/blank#}。
3.填空题- (共4题)
13.
课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4= 。
4.解答题- (共10题)
16.
某商店经营甲、乙两种商品,其进价和售价如下表:
已知该商店购进了甲、乙两种商品共160件.
(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?
(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?
| 甲 | 乙 |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?
(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?
24.
看图填空:
已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.

证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=90°,∠EFC=90°(垂线的定义)
∴ =
∥
∴∠1=
∠2=
∵∠1=∠2(已知)
∴ =
∴AD平分∠BAC(角平分线定义)
已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.

证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=90°,∠EFC=90°(垂线的定义)
∴ =
∥
∴∠1=
∠2=
∵∠1=∠2(已知)
∴ =
∴AD平分∠BAC(角平分线定义)
试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(8道)
填空题:(4道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:3
9星难题:11