1.单选题- (共11题)
1.
若函数y=f(x)在区间D上是增函数,且函数y=
在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+
是区间(0,1)上的“H函数”;
②函数g(x)=
是区间(0,1)上的“H函数”.下列判断正确的是( )

①函数f(x)=-x+

②函数g(x)=

A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
5.
在航天员进行的一项太空实验中,要先后实施6个程序,其中程序
只能出现在第一步或最后一步,程序
和
在实施时必须相邻,则在该实验中程序顺序的编排方法共有( )



A.144种 | B.96种 | C.48种 | D.34种 |
6.
现有三种类型的卡片各10张,这些卡片除类型不同外其他全部相同,现把这三种类型的卡片分给5个人,每人一张,要求三种类型的卡片都要用上,则分法的种数为( )
A.150 | B.75 | C.30 | D.300 |
9.
独立性检验中,假设:变量
与变量
没有关系,则在上述假设成立的情况下,估算概率
,表示的意义是( )



A.变量![]() ![]() ![]() |
B.变量![]() ![]() ![]() |
C.变量![]() ![]() ![]() |
D.变量![]() ![]() ![]() |
10.
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
A.假设三内角都不大于60度; |
B.假设三内角至多有两个大于60度; |
C.假设三内角至多有一个大于60度; |
D.假设三内角都大于60度。 |
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共4题)
18.
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:

(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:


(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有

附:

![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
19.
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
,中奖可以获得2分;方案乙的中奖率为
,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为
,求
的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?


(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为


(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
20.
设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这五个小球放入5个盒子中.
(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?
(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?
(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?
(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?
试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19