1.单选题- (共8题)
2.
设
,
.若p:
成等比数列;
q:
,则()



q:

A.p是q的充分条件,但不是q的必要条件 |
B.p是q的必要条件,但不是q的充分条件 |
C.p是q的充分必要条件 |
D.p既不是q的充分条件,也不是q的必要条件 |
5.
我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 | B.169石 | C.338石 | D.1365石 |
2.填空题- (共4题)
10.
如图,一辆汽车在一条水平的公路上向正西行驶,到
处时测得公路北侧一山顶D在西偏北
的方向上,行驶600m后到达
处,测得此山顶在西偏北
的方向上,仰角为
,则此山的高度
________ m. 







12.
如图,圆
与
轴相切于点
,与
轴正半轴交于两点
(
在
的上方),且
.
(Ⅰ)圆
的标准方程为 ;
(Ⅱ)过点
任作一条直线与圆
相交于
两点,下列三个结论:
①
; ②
; ③
.
其中正确结论的序号是 .(写出所有正确结论的序号)








(Ⅰ)圆

(Ⅱ)过点



①



其中正确结论的序号是 .(写出所有正确结论的序号)

3.解答题- (共6题)
13.
已知数列
的各项均为正数,
,
为自然对数的底数.
(Ⅰ)求函数
的单调区间,并比较
与
的大小;
(Ⅱ)计算
,
,
,由此推测计算
的公式,并给出证明;
(Ⅲ)令
,数列
,
的前
项和分别记为
,
, 证明:
.



(Ⅰ)求函数



(Ⅱ)计算




(Ⅲ)令







14.
某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数
的解析式;
(Ⅱ)将
图象上所有点向左平行移动
个单位长度,得到
的图象.若
图象的一个对称中心为
,求
的最小值.

![]() | 0 | ![]() | ![]() | ![]() | ![]() |
![]() | | ![]() | | ![]() | |
![]() | 0 | 5 | | ![]() | 0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数

(Ⅱ)将







16.
某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
17.
(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马
中,侧棱
底面
,且
,过棱
的中点
,作
交
于点
,连接

(Ⅰ)证明:
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面
与面
所成二面角的大小为
,求
的值.
如图,在阳马











(Ⅰ)证明:


出结论);若不是,说明理由;
(Ⅱ)若面




试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18