2013-2014学年苏教版选修2-3高二数学双基达标2.5练习卷(带解析)

适用年级:高二
试卷号:613609

试卷类型:课时练习
试卷考试时间:2017/8/22

1.选择题(共6题)

1.I enjoy ______ my bike in the mountains. It's so exciting.
2.I enjoy ______ my bike in the mountains. It's so exciting.
3.Millie has _______ free time than Sandy because she has ________ work to do than Sandy.
4.— What do you want for dinner tonight?

        We will have whatever you want.

5.— Did you go to the cinema to see 3D The Hobbit last night?

— No, I ________ go to the cinema. The tickets are too expensive.

6.— Did you go to the cinema to see 3D The Hobbit last night?

— No, I ________ go to the cinema. The tickets are too expensive.

2.填空题(共6题)

7.
是离散型随机变量,,且.又已知,则的值为 _____________.
8.
某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望等于__________(结果用最简分数表示).
9.
抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数的期望是______.
10.
某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:
投资成功
投资失败
192例
8例
 
则该公司一年后估计可获收益的数学期望是________元.
11.
设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为________.
12.
袋中有大小相同的三个球,编号分别为1,2,2,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用X表示所有被取到的球的编号之和,则X的方差为________.

3.解答题(共3题)

13.
某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是,出现绿灯的概率都是.记这4盏灯中出现红灯的数量为X,当这排装饰灯闪烁一次时:
(1)求X=2时的概率;
(2)求X的数学期望.
14.
某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费X(随机变量)的分布列;
(2)试比较哪一种方案好.
15.
A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为
X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
 
(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.
试卷分析
  • 【1】题量占比

    选择题:(6道)

    填空题:(6道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:9