1.单选题- (共10题)
2.
为了研究某班学生的脚长
(单位厘米)和身高
(单位厘米)的关系,从该班随机抽取
名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
.已知
,
,
.该班某学生的脚长为
,据此估计其身高为( )










A.![]() | B.![]() | C.![]() | D.![]() |
3.
某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 | B.0.75 | C.0.6 | D.0.45 |
6.
独立检验中,假设
:变量
与变量
没有关系,则在
成立的情况下,
表示的意义是( )





A.变量![]() ![]() |
B.变量![]() ![]() |
C.变量![]() ![]() |
D.变量![]() ![]() |
2.填空题- (共1题)
3.解答题- (共5题)
13.
某工厂对新研发的一种产品进行试销,得到如下数据表:

(1)根据上表求出回归直线方程
,并预测当单价定为8.3元时的销量;
(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?
附:线性回归方程
中斜率和截距最小二乘估计计算公式:
,

(1)根据上表求出回归直线方程

(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?
附:线性回归方程



14.
拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下
列联表:

(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为
,试求随机变量
的分布列和数学期望;
(2)若在犯错误的概率不超过
的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的
的值应为多少?请说明理由.附:独立性检验统计量
,其中
.
独立性检验临界值表:


(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为


(2)若在犯错误的概率不超过




独立性检验临界值表:

15.
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为
;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时.
(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望


(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量



试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16