四川省遂宁市2017-2018学年高二上学期期末考试数学理试题

适用年级:高二
试卷号:596950

试卷类型:期末
试卷考试时间:2018/1/29

1.单选题(共5题)

1.
已知满足条件,则目标函数从最小值连续变化到0时,所有满足条件的点构成的平面区域的面积为
A.2B.1C.D.
2.
已知矩形,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是(   )
A.B.C.D.与的大小有关
3.
若点在两条平行直线之间,则整数的值为(   )
A.B.C.D.
4.
在直角坐标系内,已知是以点为圆心的圆上的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使得,其中点,则的最大值为
A.7B.6C.5D.4
5.
如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是(   )

A.7B.8
C.9D.10

2.填空题(共1题)

6.
若直线与函数的图象相交于 两点,且____.

3.解答题(共3题)

7.
如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:
(Ⅱ)若AB=BC,求二面角的余弦值.
8.
如图,四面体中,分别是的中点,

(1)求证:平面;
(2)求直线与平面所成角的正弦值.
9.
已知圆心在轴上的圆与直线切于点.圆
(1)求圆的标准方程;
(2)已知,圆轴相交于两点(点在点的右侧).过点任作一条倾斜角不为0的直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(1道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:9