1.单选题- (共4题)
2.
对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图如图所示,则该样本中的中位数、众数、极差分别是( )
1 | 2 | 5 | | | | | | |
2 | 0 | 2 | 3 | 3 | | | | |
3 | 1 | 2 | 4 | 4 | 8 | 9 | | |
4 | 5 | 5 | 5 | 7 | 7 | 8 | 8 | 9 |
5 | 0 | 0 | 1 | 1 | 4 | 7 | 9 | |
6 | 1 | 7 | 8 | | | | | |
A.46,45,56 | B.46,45,53 |
C.47,45,56. | D.45,47,53 |
4.
赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设
,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共1题)
3.填空题- (共2题)
4.解答题- (共4题)
8.
如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为
,宽为
.

(1)若菜园面积为
,则
为何值时,可使所用篱笆总长最小?
(2)若使用的篱笆总长度为
,求
的最小值.



(1)若菜园面积为


(2)若使用的篱笆总长度为


11.
一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:
=14.45,
=27.31,
=0.850,
=1.042,
=1.222.
②参考公式:相关系数:r=
.回归方程
=
x+
中斜率和截距的最小二乘估计公式分别为:
=
,
=
-

x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:





②参考公式:相关系数:r=










试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(1道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:10