1.单选题- (共8题)
1.
某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )
A.87 | B.87.5 | C.87.6 | D.88 |
2.
某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是( )
读书时间(小时) | 7 | 8 | 9 | 10 | 11 |
学生人数 | 6 | 10 | 9 | 8 | 7 |
A.9,8 | B.9,9 | C.9.5,9 | D.9.5,8 |
8.
如图,在△ABC中,D、E分别是AB、AC的中点,BC=16,F是线段DE上一点,连接AF、CF,DE=4DF,若∠AFC=90°,则AC的长度是( )


A.6 | B.8 | C.10 | D.12 |
2.填空题- (共3题)
11.
如图所示,在△ABC中,AD是∠BAC的平分线,G是AD上一点,且AG=DG,连接BG并延长BG交AC于E,又过C作AD的垂线交AD于H,交AB为F,则下列说法正确的是_____(填序号).
①D是BC的中点;②∠CDA>∠2;③BE是△ABC的边AC上的中线;
④CH为△ACD的边AD上的高;⑤△AFC为等腰三角形;
⑥连接DF,若CF=6,AD=8,则四边形ACDF的面积为24.
①D是BC的中点;②∠CDA>∠2;③BE是△ABC的边AC上的中线;
④CH为△ACD的边AD上的高;⑤△AFC为等腰三角形;
⑥连接DF,若CF=6,AD=8,则四边形ACDF的面积为24.

3.解答题- (共5题)
12.
某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的
,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.
(1)求甲,乙两木工组单独修理这批桌凳的天数;
(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.

(1)求甲,乙两木工组单独修理这批桌凳的天数;
(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.
14.
阅读理解:
关于x的方程:x+
=c+
的解为x1=c,x2=
;x﹣
=c﹣
(可变形为x+
=c+
)的解为x1=c,x2=
;x+
=c+
的解为x1=c,x2=
Zx+
=c+
的解为x1=c,x2=
Z.
(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+
=c+
(m≠0)的解为 .
(2)应用结论:解关于y的方程y﹣a=
﹣
关于x的方程:x+














(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+


(2)应用结论:解关于y的方程y﹣a=


15.
过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,C

A. (1)求证:四边形AECF是菱形; (2)若AB=6,AC=10,EC= ![]() |

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16