1.单选题- (共5题)
3.
设椭圆E:
1(a>b>0)的一个焦点为F(c,0)(c>0),点A(﹣c,c)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9c,则椭圆E的离心率取值范围为( )

A.[![]() | B.[![]() ![]() | C.[![]() ![]() | D.[![]() ![]() |
2.填空题- (共1题)
3.解答题- (共4题)
7.
已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
8.
如图,在六棱锥P﹣ABCDEF中,六边形ABCDEF为正六边形,平面PAB⊥平面ABCDEF,AB=1,PA
,PB=2.

(1)求证:PA⊥平面ABCDEF;
(2)求直线PD与平面PAE所成角的正弦值.


(1)求证:PA⊥平面ABCDEF;
(2)求直线PD与平面PAE所成角的正弦值.
9.
已知点P(1,2)在抛物线C:y2=2px(p>0)上.
(Ⅰ)求C的方程;
(Ⅱ)斜率为﹣1的直线与C交于异于点P的两个不同的点M,N,若直线PM,PN分别与x轴交于A,B两点,求证:△PAB为等腰三角形.
(Ⅰ)求C的方程;
(Ⅱ)斜率为﹣1的直线与C交于异于点P的两个不同的点M,N,若直线PM,PN分别与x轴交于A,B两点,求证:△PAB为等腰三角形.
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(1道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:10