2019年陕西师大附中中考数学五模试卷

适用年级:初三
试卷号:579860

试卷类型:四模及以后
试卷考试时间:2019/11/19

1.单选题(共5题)

1.
下列运算正确的是(  )
A.(-3mn)=-6mnB.4x+2x+x=6x
C.(xy)÷(-xy)=-xyD.(a-b)(-a-b)=a-b
2.
如图,△ABC中,∠A=25°,∠B=65°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD的度数是(  )
A.25°B.20°C.30°D.15°
3.
直线:y=-x+1与直线关于点(1,0)成中心对称,下列说法正确的是(  )
A.将向下平移2个单位得到
B.将向右平移2个单位得到
C.将向左平移1个单位,再向下平移2个单位得到
D.将向左平移4个单位,再向上平移1个单位得到
4.
已知正比例函数y=kx(k≠0)的图象经过点A(a-2,b)和点B(a,b+4),则k的值为(  )
A.B.-C.2D.-2
5.
如图,BD为菱形ABCD的一条对角线,E、F在BD上,且四边形ACEF为矩形,若EF=BD,则 的值为(  )
A.B.C.D.

2.填空题(共4题)

6.
不等式的最小整数解为_____.
7.
如图,AE∥CD,△ABC为等边三角形,若∠CBD=15°,则∠EAC的度数是(  )
A.60°B.45°C.55°D.75°
8.
如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为_____.
9.
如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是_____度.

3.解答题(共5题)

10.
我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.

组别
捐款额x/元
人数
A
1≤x<10
 
B
10≤x<20
100
C
20≤x<30
 
D
30≤x<40
 
E
x≥40
 
 
(1)a=    ,本次抽样调查样本的容量是    
(2)补全“捐款人数分组统计图1”;
(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.
11.
解方程:
12.
如图,AB∥CD,且AB=CD,连接BC,在线段BC上取点E、F,使得CE=BF,连接AE、DF.求证:AE∥DF.
13.
如图,已知四边形ABCD中,AD<BC,AD∥BC,∠B为直角,将这个四边形折叠使得点A与点C重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)
14.
为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2

(1)求y与x之间的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:14