1.选择题- (共1题)
2.填空题- (共14题)
3.
如图,半圆O的直径为2,A为直径延长线上一点,OA=2,B为半圆上任意一点,以线段AB为腰作等腰直角△ABC(C、O两点在直线AB的两侧),当∠AOB变化时,OC≤m恒成立,则m的最小值为______ .

9.
如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______ .

3.解答题- (共6题)
16.
某地拟在一个U形水面PABQ(∠A=∠B=90°)上修一条堤坝(E在AP上,N在BQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点E,N拉2条分隔线ME,MN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,设所拉分隔线总长度为l.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.

18.
在△ABC中,设a,b,c分别是角A,B,C的对边,已知向量
=(a,sinC-sinB),
=(b+c,sinA+sinB),且
∥
,
(1)求角C的大小
(2)若c=3,求△ABC的周长的取值范围.




(1)求角C的大小
(2)若c=3,求△ABC的周长的取值范围.
19.
已知a,b,c∈(0,+∞).
(1)若a=6,b=5,c=4是△ABC边BC,CA,AB的长,证明:cosA∈Q;
(2)若a,b,c分别是△ABC边BC,CA,AB的长,若a,b,c∈Q时,证明:cosA∈Q;
(3)若存在λ∈(-2,2)满足c2=a2+b2+λab,证明:a,b,c可以是一个三角形的三边长.
(1)若a=6,b=5,c=4是△ABC边BC,CA,AB的长,证明:cosA∈Q;
(2)若a,b,c分别是△ABC边BC,CA,AB的长,若a,b,c∈Q时,证明:cosA∈Q;
(3)若存在λ∈(-2,2)满足c2=a2+b2+λab,证明:a,b,c可以是一个三角形的三边长.
20.
如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥平面ABCD.M是AD的中点,N是PC的中点.
(1)求证:MN∥平面PAB;
(2)若平面PMC⊥平面PAD,求证:CM⊥AD;
(3)若平面ABCD是矩形,PA=AB,求证:平面PMC⊥平面PBC.
(1)求证:MN∥平面PAB;
(2)若平面PMC⊥平面PAD,求证:CM⊥AD;
(3)若平面ABCD是矩形,PA=AB,求证:平面PMC⊥平面PBC.

试卷分析
-
【1】题量占比
选择题:(1道)
填空题:(14道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20