浙江省绍兴市柯桥区2018-2019学年七年级上学期期末数学试题

适用年级:初一
试卷号:565654

试卷类型:期末
试卷考试时间:2019/12/11

1.单选题(共2题)

1.
人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为(  )
A.3×107B.30×106C.0.3×107D.0.3×108
2.
某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了(  )分.
A.11B.14C.16D.18

2.填空题(共6题)

3.
若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为_____.
4.
在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是_____.
5.
计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的_________位数.
6.
已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为_____.
7.
用度表示30°9′36″为_____.
8.
如图,AB,CD相交于点O,∠BOE=90°,有以下结论:
①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;
③∠AOC=∠BOD;④∠COE与∠DOE互为补角;
⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE
其中错误的有_____(填序号).

3.解答题(共7题)

9.
   计算:
(1)﹣12018+(﹣6)2×(
(2)+﹣|﹣3|
10.
   公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:
运往
运费(元/辆)
甲厂家
乙厂家
A地
5
10
B地
6
4
 
(1)若设甲厂家运往A地的自行车的量数为x,
则甲厂家运往B地的自行车的量数为    
则乙厂家运往A地的自行车的量数为    
则乙厂家运往B地的自行车的量数为    
(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?
11.
   如题,平面上四个点A,B,C,D,按要求完成下列问题:
(1)连接线段AD,BC;
(2)画射线AB与直线CD相交于E点;
(3)在直线CD上找一点M,使线段AM最短,并说明理由.
12.
   如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.
(1)若a=4 cm,b=6 cm,求线段MN的长;
(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;
(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.
13.
   先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣
14.
   请阅读下列材料,并解答相应的问题:
将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.

(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为    
(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;
(3)图3是一个三阶幻方,那么标有x的方格中所填的数是    
(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=    ,y=    
15.
   观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.
(1)数对(0,0),(5,)中是“有趣数对”的是    
(2)若(a,)是“有趣数对”,求a的值;
(3)请再写出一对符合条件的“有趣数对”    
(注意:不能与题目中已有的“有趣数对”重复)
(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.
试卷分析
  • 【1】题量占比

    单选题:(2道)

    填空题:(6道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:15