2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)

适用年级:高三
试卷号:532969

试卷类型:高考真题
试卷考试时间:2017/7/26

1.单选题(共11题)

1.
设集合,则
A.{1,3}B.{3,5}C.{5,7}D.{1,7}
2.
函数y=2x2–e|x|在[–2,2]的图像大致为(    )
A.B.C.D.
3.
若a>b>0,0<c<1,则
A.logac<logbcB.logca<logcbC.ac<bc D.ca>cb
4.
将函数的图象向右平移个周期后,所得图象对应的函数为(   )
A.B.C.D.
5.
△ABC的内角A、B、C的对边分别为a、b、c.已知,则b=
A.B.C.2D.3
6.
如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是

A.17πB.18πC.20πD.28π
7.
平面过正方体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为
A.B.C.D.
8.

   直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为 (  )

A.B.
C.D.
9.
为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
A.B.C.D.
10.
执行如图的程序框图,如果输入的,则输出的值满足( )
A.B.C.D.
11.
的实部与虚部相等,其中为实数,则(  )
A.−3B.−2C.2D.3

2.填空题(共3题)

12.
已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=  .
13.
某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为______元.
14.
设直线与圆Cx2+y2-2ay-2=0相交于AB两点,若,则圆C的面积为________

3.解答题(共4题)

15.
已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若有两个零点,求的取值范围.
16.
已知是公差为3的等差数列,数列满足
(Ⅰ)求的通项公式;   (Ⅱ)求的前n项和.
17.
如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
18.
某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(Ⅰ)若=19,求yx的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
试卷分析
  • 【1】题量占比

    单选题:(11道)

    填空题:(3道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:18