1.单选题- (共11题)
5.
若函数
(其中
,
图象的一个对称中心为
,
,其相邻一条对称轴方程为
,该对称轴处所对应的函数值为
,为了得到
的图象,则只要将
的图象( )









A.向右平移![]() | B.向左平移![]() |
C.向左平移![]() | D.向右平移![]() |
11.
我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图源于“辗转相除法”,当输入
,
时,输出的
( )





A.30 | B.6 | C.2 | D.8 |
2.填空题- (共4题)
3.解答题- (共5题)
18.
在平行四边形
中,
,
,过
点作
的垂线,交
的延长线于点
,
.连结
,交
于点
,如图1,将
沿
折起,使得点
到达点
的位置,如图2.

(1)证明:平面
平面
;
(2)若
为
的中点,
为
的中点,且平面
平面
,求三棱锥
的体积.
















(1)证明:平面


(2)若







19.
已知动点
满足:
.
(1)求动点
的轨迹
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,
,试问在曲线
上是否存在点
,使得四边形
(
为坐标原点)为平行四边形?若存在,求出直线
的方程;若不存在,说明理由.


(1)求动点


(2)若点














20.
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃)对某种鸡的时段产蛋量
(单位:
)和时段投入成本
(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

其中
.
(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给出判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,建立
关于
的回归方程;
(3)已知时段投入成本
与
的关系为
,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有线性相关关系的数据
,其回归直线
的斜率和截距的最小二乘估计公式分别为
.
②







![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中

(1)根据散点图判断,




(2)若用



(3)已知时段投入成本



附:①对于一组具有线性相关关系的数据



②
![]() | ![]() | ![]() | ![]() | ![]() |
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20