1.单选题- (共11题)
2.
我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数
的不足近似值和过剩近似值分别为
和
,则
是
的更为精确的不足近似值或过剩近似值,我们知道
,若令
,则第一次用“调日法”后得
是
的更为精确的过剩近似值,即
,若每次都取最简分数,那么第三次用“调日法”后可得
的近似分数为( )











A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
15.
我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为
的圆六等分,分别以各等分点为圆心,以
为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.



3.解答题- (共5题)
18.
如图,
是以
为直径的圆
上异于
的点,平面
平面
,
,
,
分别是
的中点,记平面
与平面
的交线为直线
.
(Ⅰ)求证:直线
平面
;
(Ⅱ)直线
上是否存在点
,使直线
分别与平面
、直线
所成的角互余?若存在,求出
的值;若不存在,请说明理由.













(Ⅰ)求证:直线


(Ⅱ)直线







19.
如图,设点A,B的坐标分别为(-
,0),(
),直线AP,BP相交于点P,且它们的斜率之积为-
.
(1)求P的轨迹方程;
(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足AP∥OM,BP∥ON,求证:△MON的面积为定值.



(1)求P的轨迹方程;
(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足AP∥OM,BP∥ON,求证:△MON的面积为定值.

20.
泗县一中为鼓励家校互动,与当地电信公司合作,为教师办理流量套餐.为了解该校教师手机流量使用情况.通过抽样,得到100位教师近2年每人手机月平均使用流量
(单位:
)的数据,其频率分布直方图如下:

若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取4人,求这4人中至多有1人月使用流量不超过
的概率;
(2)现该通讯商推出三款流量套餐,详情如下:
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值
流量,资费20;如果又超出充值流量,系统就再次自动帮用户充值
流量,资费20元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的
,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.



若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取4人,求这4人中至多有1人月使用流量不超过

(2)现该通讯商推出三款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位:![]() |
![]() | 20 | 300 |
![]() | 30 | 500 |
![]() | 38 | 700 |
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值



试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20