1.单选题- (共9题)
2.
如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )


A.13 | B.17 | C.18 | D.25 |
5.
小亮想了解旗杆的高度,于是升旗的绳子拉倒旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆6 m处,发现此时绳子末端距离地面1 m,则旗杆的高度(滑轮上方的部分忽略不计)为( )


A.17 m |
B.17.5 m |
C.18 m |
D.18.5 m |
7.
如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )


A.CD、EF、GH | B.AB、EF、GH | C.AB、CD、GH | D.AB、CD、EF |
8.
如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为( )


A.S1>S2 | B.S1<S2 | C.S1=S2 | D.不能确定 |
2.填空题- (共8题)
12.
如图,四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”,如果大正方形面积为169,且直角三角形中较短的直角边的长为5,则中间小正方形面积(阴影部分)为________.

16.
《九章算术》中记载:“今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是_____尺.

3.解答题- (共7题)
19.
已知a,b满足|a﹣
|+
+(c﹣4
)2=0.
(1)求a,b,c的值;
(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.



(1)求a,b,c的值;
(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
21.
如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:
(1)线段AB的长为________,BC的长为________,CD的长为________;
(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.
(1)线段AB的长为________,BC的长为________,CD的长为________;
(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.

22.
在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.

23.
为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于

A.已知AB=2.5km,CA=1.5km,DB=1.Okm,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等? |

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:13