1.单选题- (共7题)
2.
如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为( )


A.78° | B.45° | C.60° | D.75° |
4.
求证:菱形的两条对角线互相垂直.
已知:如图,四边形
是菱形,对角线
,
交于点
.
求证:
.
以下是排乱的证明过程:①又
,
②∴
,即
.
③∵四边形
是菱形,
④∴
.
证明步骤正确的顺序是( )

已知:如图,四边形




求证:

以下是排乱的证明过程:①又

②∴


③∵四边形

④∴

证明步骤正确的顺序是( )

A.③→②→①→④ | B.③→④→①→② | C.①→②→④→③ | D.①→④→③→② |
6.
如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )


A.AB=BE B.BE⊥DC | B.∠ADB=90° | C.CE⊥DE |
2.选择题- (共1题)
8.表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为 {#mathml#}{#/mathml#} ,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为{#blank#}1{#/blank#}.
3.填空题- (共2题)
10.
如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为( )


A.2 | B.3 | C.4 | D.5 |
4.解答题- (共3题)
12.
已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)

(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)
试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(2道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:0
9星难题:8