1.单选题- (共10题)
1.
如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )


A.A点 | B.B点 | C.C点 | D.D点 |
3.
如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )


A.①②③ | B.① | C.② | D.③ |
4.
小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理.

A. 2;SAS B. 4;ASA C. 2;AAS D. 4;SAS

A. 2;SAS B. 4;ASA C. 2;AAS D. 4;SAS
2.填空题- (共7题)
12.
如图,△ABC的面积为1,分别倍长(延长一倍)AB,BC,CA得到△A1B1C1,再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△A2016B2016C2016的面积为__.

3.解答题- (共6题)
18.
如图,已知△ABC 中,∠B=∠C,AB="8" 厘米,BC="6" 厘米,点 D 为AB的中点.如果点 P 在线段 BC 上以每秒 2 厘米的速度由 B 点向 C 点运动, 同时,点 Q 在线段 CA 上以每秒 a 厘米的速度由 C 点向 A 点运动,设运动时间为 t(秒)(0≤t≤3).
(1)用的代数式表示 PC 的长度;
(2)若点 P、Q 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
(3)若点 P、Q 的运动速度不相等,当点 Q 的运动速度 a 为多少时,能够使△BPD 与△CQP 全等?
(1)用的代数式表示 PC 的长度;
(2)若点 P、Q 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
(3)若点 P、Q 的运动速度不相等,当点 Q 的运动速度 a 为多少时,能够使△BPD 与△CQP 全等?

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(7道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:10