刷题首页
题库
高中数学
题干
对于集合
,若存在两个数列
满足(i)
;(ii)
,则称M为一个“友谊集”,称(A,B)为
的一种“友谊排列”,如A=(3,10,7,9,6)和B=(2,8,4,5,1)便是集合
的一种友谊排列,记为
(1)证明:若
为一个友谊集,则存在偶数种友谊排列;
(2)确定集合
及
的全体友谊排列.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-28 09:40:45
答案(点此获取答案解析)
同类题1
某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了2014个站台(编号依次为l,2,…,2014)分别对应一个年份,起始站及终点站均为第1站(对应2014年).为节约成本,机器每次运行一圈,只在其中一半的站台停靠,出于技术原因,每次至多行驶三站必须停靠一次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同的停靠方式的种数.
同类题2
设
.若有四个互异数
、
、
、
,使
,就称
与
是集
的一个“平衡对”.则集合
中平衡对的个数是______.
同类题3
设
,(
)是任意的和为正数的
个不同的实数,(
.)是这
个数的一个排列.若对任意的
,有
,则称(
)是一个“好排列”.求好排列个数的最小值.
同类题4
有2012位学者参加某数学会议,他们中有些人相互认识,且满足:
(1)每个人至少认识其中的671个人;
(2)对于其中任意两个人
、
,若
、
相互不认识,则总可以通过其他人间接认识,即存在
,使得
认识
,
认识
,
认识
;
(3)不可以将2012位学者排成一排,使得相邻的两个人相互认识.
证明:可以将2012位学者分成两组,其中一组能够排成一圈,使得相邻的人相互认识,另一组任何两个人不认识.
同类题5
将编号为1,2,…,9的几颗珍珠随机固定在一串项链上,假设每颗珍珠的距离相等,记项链上所有相邻珍珠编号之差的绝对值之和为
则
取得最小值的放法的概率为______.
相关知识点
竞赛知识点
排列组合
排列组合的基本公式
圆排列和项链排列