刷题首页
题库
高中数学
题干
渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼很快地失去新鲜度(以鱼肉内的三甲胺量的多少来确定鱼的新鲜度.三甲胺是一种挥发性碱性氨,是氨的衍生物,它是由细菌分解产生的.三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败).已知某种鱼失去的新鲜度
与其出海后时间
(分)满足的函数关系式为
.若出海后10分钟,这种鱼失去的新鲜度为10%,出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知
,结果取整数)( )
A.33分钟
B.40分钟
C.43分钟
D.50分钟
上一题
下一题
0.99难度 单选题 更新时间:2020-03-16 10:19:15
答案(点此获取答案解析)
同类题1
若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是( )
A.
B.y=(0.957 6)
100x
C.
D.y=1-(0.042 4)
同类题2
人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:
,其中
x
表示经过的时间,
表示
x
=0时的人口,
r
表示人口的平均增长率.
下表是1950―1959年我国人口数据资料:
如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:
由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)
同类题3
某科研团队对某一生物生长规律进行研究,发现其生长蔓延的
速度越来越快
.开始在某水域投放一定面积的该生物,经过2个月其覆盖面积为18平方米,经过3个月其覆盖面积达到27平方米.该生物覆盖面积
(单位:平方米)与经过时间
个月的关系有两个函数模型
与
可供选择.
(1)试判断哪个函数模型更合适,并求出该模型的函数解析式;
(2)问约经过几个月,该水域中此生物的面积是当初投放的1000倍
(参考数据:
)
同类题4
对年利率为
的连续复利,要在
年后达到本利和
,则现在投资值为
,
是自然对数的底数.如果项目
的投资年利率为
的连续复利.
(1)现在投资5万元,写出满
年的本利和,并求满10年的本利和;(精确到0.1万元)
(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目
投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)
同类题5
预测人口的变化趋势有多种方法,最常用的是“直接推算法”,使用的公式是
P
n
=
P
0
(1+
K
)
n
(
K
为常数),其中
P
n
为预测期内
n
年后的人口数,
P
0
为初期人口数,
K
为预测期内的年增长率,若-1<
K
<0,则在这期间人口数( )
A.呈上升趋势
B.呈下降趋势
C.呈先上升再下降的趋势
D.呈先下降再上升的趋势
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(2)——指数、对数、幂函数
指数函数模型的应用(2)