刷题首页
题库
高中数学
题干
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知双曲线
的渐近线方程为
,一个焦点为
.直线
与
在第一象限内与双曲线及渐近线围成如图所示的图形
,则它绕
轴旋转一圈所得几何体的体积为_____.
上一题
下一题
0.99难度 填空题 更新时间:2017-12-15 05:05:42
答案(点此获取答案解析)
同类题1
若点
在椭圆
内,则被
所平分的弦所在的直线方程是
,通过类比的方法,可求得:被
所平分的双曲线
的弦所在的直线方程是( )
A.
B.
C.
D.
同类题2
我们知道:在平面内,点
到直线
的距离公式为
,通过类比的方法,可求得:在空间中,点
到平面
的距离为__________.
同类题3
在圆中有结论:如图所示,“
AB
是圆
O
的直径,直线
AC
,
BD
是圆
O
过
A
,
B
的切线,
P
是圆
O
上任意一点,
CD
是过
P
的切线,则有
PO
2
=
PC
·
PD
”.类比到椭圆:“
AB
是椭圆的长轴,直线
AC
,
BD
是椭圆过
A
,
B
的切线,
P
是椭圆上任意一点,
CD
是过
P
的切线,则有__▲__.”
同类题4
已知椭圆
:
,其焦距为
,若
,则称椭圆
为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是
,
,以
,
,
,
为顶点的菱形
的内切圆过焦点
,
.
(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.
同类题5
已知命题:在平面直角坐标系
中,椭圆
,
的顶点
在椭圆上,顶点
,
分别为椭圆的左、右焦点,椭圆的离心率为
,则
,现将该命题类比到双曲线中,
的顶点
在双曲线上,顶点
、
分别为双曲线的左、右焦点,设双曲线的方程为
.双曲线的离心率为
,则有__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理