刷题首页
题库
高中数学
题干
某媒体对“男女同龄退佈”这一公众关注的问题进行了民意调査,右表是在某单位得到的数据(人数):
(I )能否有90%以上的把握认为对这一问题的看法与性别有关?
(II)进一步调查:
(i)从赞同“男女同龄退休” 16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率;
(ii )从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为X,求X的分布列和均值.
附:
上一题
下一题
0.99难度 解答题 更新时间:2012-02-29 12:10:06
答案(点此获取答案解析)
同类题1
吃零食是中学生中普遍存在的现象,吃零食对学生身体发有有诸多不利影响,影响学生的健康成长,如表是性别与吃零食的列联表:
男
女
总计
喜欢吃零食
30
20
50
不喜欢吃零食
20
30
50
总计
50
50
100
附:K
2
=
,
P(K
2
≥k
0
)
0.15
0.10
0.05
0.025
0.010
k
0
2.072
2.706
3.841
5.024
6.635
根据以上数据,你有多大把握认为“喜欢吃零食与性别有关”( )
A.
以上
B.
以上
C.
以上
D.
以上
同类题2
某学生对其亲属
人的饮食习惯进行了一次调查,下列
列联表:
主食蔬菜
主食肉类
总计
岁以下
岁以上
16
总计
有
________
的把握认为其亲属的饮食习惯与年龄有关.
附:
,
同类题3
在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:
不使用手机
使用手机
合计
学习成绩优秀人数
28
12
40
学习成绩不优秀人数
14
26
40
合计
42
38
80
参考数据:
,其中
.
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中不使用手机且成绩优秀的同学记为
组,使用手机且成绩优秀的同学记为
组,计划从
组推选的4人和
组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自
组、另一人来自
组的概率.
同类题4
随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查
人,并将调查情况进行整理后制成下表:
年龄(岁)
频数
赞成人数
(1)世界联合国卫生组织规定:
岁为青年,
为中年,根据以上统计数据填写以下
列联表:
青年人
中年人
合计
不赞成
赞成
合计
(2)判断能否在犯错误的概率不超过
的前提下,认为赞成“车柄限行”与年龄有关?
附:
,其中
独立检验临界值表:
(3)若从年龄
的被调查中各随机选取
人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为
,求随机变量
的分布列和数学期望
.
同类题5
某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:100,110),110,120),120,130),130,140),140,150分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K
2
≥k
0
)
0.100
0.050
0.010
0.001
k
0
2.706
3.841
6.635
10.828
,
相关知识点
计数原理与概率统计
统计案例
独立性检验
超几何分布的均值