某工厂有两台不同机器A和B生产同一种产品各10万件,现从各自生产的产品中分别随机抽取二十件,进行品质鉴定,鉴定成绩的茎叶图如下所示:

该产品的质量评价标准规定:鉴定成绩达到

的产品,质量等级为优秀;鉴定成绩达到

的产品,质量等级为良好;鉴定成绩达到

的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)从等级为优秀的样本中随机抽取两件,记

为来自B机器生产的产品数量,写出

的分布列,并求

的数学期望;
(2)完成下列

列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B机器生产的产品比A机器生产的产品好;
| A生产的产品
| B生产的产品
| 合计
|
良好以上(含良好)
|
|
|
|
合格
|
|
|
|
合计
|
|
|
|
(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?
