刷题首页
题库
高中数学
题干
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
是否需要志愿者
性别
男
女
需要
40
30
不需要
160
270
参考数据:
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
上一题
下一题
0.99难度 解答题 更新时间:2018-07-22 04:08:37
答案(点此获取答案解析)
同类题1
某食品厂为了检查甲乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
(1)若检验员不小心将甲、乙两条流水线生产的重量值在
的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;
(2)由以上统计数据完成下面
列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线
乙流水线
合计
合格品
不合格品
合计
同类题2
手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性
用户
分值区间
50,60)
60,70)
70,80)
80,90)
90,100
频数
20
40
80
50
10
男性
用户
分值区间
50,60)
60,70)
70,80)
80,90)
90,100
频数
45
75
90
60
30
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,能否有
的把握认为“是否是评分良好用户”与性别有关?
参考公式及数据:
,其中
.
同类题3
通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:
女
男
总计
读营养说明
16
28
44
不读营养说明
20
8
28
总计
36
36
72
参考公式:
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
则根据以上数据:
A.能够以99.5%的把握认为性别与读营养说明之间无关系;
B.能够以99.9%的把握认为性别与读营养说明之间无关系;
C.能够以99.5%的把握认为性别与读营养说明之间有关系;
D.能够以99.9%的把握认为性别与读营养说明之间有关系;
同类题4
通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男
女
总计
读营养说明
16
28
44
不读营养说明
20
8
28
总计
36
36
72
(1)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的28名不读营养说明的大学生中,随机抽取2名学生,求抽到女生人数
的分布列及数学期望.
附:
0.010
0.005
0.001
6.635
7.879
10.828
同类题5
郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?
非围棋迷
围棋迷
合计
男
女
10
55
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
附:
,
0.05
0.01
3.841
6.635
相关知识点
计数原理与概率统计
统计案例
独立性检验