刷题首页
题库
高中数学
题干
在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有
以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有
上一题
下一题
0.99难度 单选题 更新时间:2014-04-15 02:54:28
答案(点此获取答案解析)
同类题1
某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本
(元)与生产该产品的数量
(千件)有关,经统计得到如下数据:
1
2
3
4
5
6
7
8
112
61
44.5
35
30.5
28
25
24
根据以上数据,绘制了散点图.
观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型
和指数函数模型
分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为
,
与
的相关系数
.
参考数据(其中
):
183.4
0.34
0.115
1.53
360
22385.5
61.4
0.135
(1)用反比例函数模型求
关于
的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
,相关系数
.
同类题2
以下是关于散点图和线性回归的判断,其中正确命题的序号是______(选出所有正确的结论)
①若散点图中的点的分布从整体上看大致在一条直线附近,则这条直线为回归直线;
②利用回归直线,我们可以进行预测.若某人37岁,我们预测他的体内脂肪含量在
附近,则这个
是对年龄为37岁的人群中的大部分人的体内脂肪含量所做出的估计;
③若散点图中点散布的位置是从左下角到右上角的区域,则两个变量的这种相关为负相关;
④若散点图中点散布的位置是从左上角到右下角的区域,则两个变量的这种相关为正相关.
同类题3
假设关于某设备的使用年限
x
和所支出的维修费用
y
(万元),有如下的统计资料:
x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
若由资料可知
y
对
x
呈线性相关关系,且线性回归方程为
y
=
a
+
bx
,其中已知
b
=1.23,请估计使用年限为20年时,维修费用约为
_________
同类题4
废品率
和每吨生铁成本
(元)之间的回归直线方程为
,这表明()
A.
与
的相关系数为2
B.
与
的关系是函数关系的充要条件是相关系数为1
C.废品率每增加1%,生铁成本增加258元
D.废品率每增加1%,生铁成本平均每吨增加2元
同类题5
有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:
气温
0
4
12
19
27
热奶茶销售杯数
150
132
130
104
94
(1)求热奶茶销售杯数关于气温的线性回归方程
(
精确到0.1),若某天的气温为
,预测这天热奶茶的销售杯数;
(2)从表中的5天中任取一天,若已知所选取该天的热奶茶销售杯数大于120,求所选取该天热奶茶销售杯数大于130的概率.
参考数据:
,
.
参考公式:
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系