刷题首页
题库
高中数学
题干
已知
与
之间的数据如下表:
(1)求
关于
的线性回归方程;
(2)完成下面的残差表:
并判断(1)中线性回归方程的回归效果是否良好(若
,则认为回归效果良好).
附:
,
,
,
.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-05 09:09:25
答案(点此获取答案解析)
同类题1
某工厂为了对新研发的产品进行合理定价,将该产品按实现拟定的价格进行试销,得到一组检测数据
(
)如下表所示:
试销价格
(元)
4
5
6
7
9
产品销量
(件)
84
83
80
75
68
已知变量
具有线性负相关关系,且
,
,现有甲、乙、丙三位同学通过计算求得其回归直线方程为:甲:
;乙:
;丙:
,其中有且仅有一位同学的计算是正确的.
(1)试判断谁的计算结果正确?并求出
的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求这两个检验数据均为“理想数据”的概率.
同类题2
某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)
年份
(年)
5
6
7
8
投资金额
(万元)
15
17
21
27
(1)利用所给数据,求出投资金额
与年份
之间的回归直线方程
;
(2)预测该社区在2019年在“文化丹青”上的投资金额.
(附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.)
同类题3
《厉害了,我的国》这部电影记录:到2017年底,我国高铁营运里程达2.5万公里,位居世界第一位,超过第二名至第十名的总和,约占世界高铁总量的三分之二.如图是我国2009年至2017年高铁营运里程(单位:万公里)的折线图.
根据这9年的高铁营运里程,甲、乙两位同学分别选择了
与时间变量
的两个回归模型①:
;②
.
(1)求
,
(精确到0.01);
(2)乙求得模型②的回归方程为
,你认为哪个模型的拟合效果更好?并说明理由.
附:参考公式:
,
,
.
参考数据:
1.39
76.94
285
0.22
0.09
3.72
同类题4
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x
2011
2012
2013
2014
2015
储蓄存款y(千亿元)
5
6
7
8
10
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
同类题5
2016年一交警统计了某段路过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速
事故次数
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)试根据(2)求出的线性回归方程,预测2017年该路段路况及相关安全设施等不变的情况下,车速达到
时,可能发生的交通事故次数.
(参考数据:
)
参考公式:
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程
残差的计算